
Simulation of Self Driving Car
 Shraddha Manchekar, Bhargav Parsi, Nikhil Thakur, Kelly Bielaski

Computer Science Department, University of California, Los Angeles

bparsi@g.ucla.edu

nikhilt44@g.ucla.edu

smanchekar@ucla.edu

kellybielaski@ucla.edu

Abstract— For the past decade, there has been a surge of interest
in self-driving cars. This is due to breakthroughs in the field of
deep learning where deep neural networks are trained to
perform tasks that typically require human intervention. CNN’s
apply models to identify patterns and features in images, making
them useful in the field of Computer Vision. Examples of these
are object detection, image classification, image captioning, etc.
In this project, we have trained a CNN using images captured by
a simulated car in order to drive the car autonomously. The CNN
learns unique features from the images and generates steering
predictions allowing the car to drive without a human. For
testing purposes and preparing the dataset the Unity based
simulator provided by Udacity was used.

Keywords— autonomous driving, deep learning, Convolutional
Neural Network (CNN), steering commands, NVIDIA,
end-to-end learning, deep steering

I. INTRODUCTION

In recent years, autonomous driving algorithms
using low-cost vehicle-mounted cameras have
attracted increasing research endeavours from both,
academia and industry. Various levels of
automation have been defined in autonomous
driving. There’s no automation in level 0. A human
driver controls the vehicle. Level 1 and 2 are
advanced driver assistance systems where a human
driver still controls the system but a few features
like brake, stability control, etc. are automated.
Level 3 vehicles are autonomous, however, a
human driver is still needed to monitor and
intervene whenever necessary. Level 4 vehicles are
fully autonomous but the automation is limited to
the operational design domain of the vehicle i.e. it
does not cover every driving scenario. Level 5
vehicles are expected to be fully autonomous and
their performance should be equivalent to that of a
human driver. We are very far from achieving level

5 autonomous vehicles in the near future. However,
level - 3/4 autonomous vehicles are potentially
becoming a reality in the near future. Primary
reasons for drastic technical achievements in this
fields are technical breakthroughs and excellent
research being done in the field of computer vision
and machine learning and also the low-cost
vehicle-mounted cameras which can either
independently provide actionable information or
complement other sensors. Many vision-based
drivers assist features have been widely supported
in the modern vehicles. Some of these features
include pedestrian/bicycle detection, collision
avoidance by estimating the front car distance, lane
departure warning, etc. However, in this project, we
target autonomous steering, which is a relatively
unexplored task in the field of computer vision and
machine learning.

In this project, we implement a convolutional
neural network (CNN) to map raw pixels from the
captured images to the steering commands for a
self-driving car. With minimum training data from
the humans, the system learns to steer on the road,
with or without the lane markings.

This report is organized as follows. Section II
contains a brief overview of the relevant works
developed in the past years. Section III and IV
elaborate on the data collection and data
preprocessing part of the project respectively.
Section V explains the deep learning model that we
used and Section VI describes the system
architecture. System performance is evaluated in
section VII where section VIII and IX discuss the
future work and conclusion.

mailto:bparsi@g.ucla.edu
mailto:nikhilt44@g.ucla.edu
mailto:smanchekar@ucla.edu
mailto:kellybielaski@ucla.edu

II. RELATED WORK

The DAVE system was created by DARPA [1]
and used images from two cameras as well as left
and right steering commands to train a model to
drive. It demonstrates that the technique of
end-to-end learning can be applied to autonomous
driving. This means that the intermediate features
such as the stop signs and lane markings don’t have
to be annotated or labelled for the system to learn.
DAVE is an early project in the field of
autonomous driving. In the context of current
technology, a huge portion relied on wireless data
exchange because the vehicle couldn’t carry the
computers and power sources for the system, which
contrasts the lighter equipment that exists today.
The architecture of this model was a CNN made up
of fully connected layers that stemmed from
networks previously used in object recognition.

The ALVINN system [2] is a 3-layer
back-propagation network built by a group at CMU
to complete the task of lane-following. It trains on
images from a camera and a distance measure from
a laser range finder to output the direction the
vehicle should move. ALVINN’s model uses a
single hidden layer back-propagation network.

We replicated a study by NVIDIA [3]. The
system uses an end-to-end approach where the data
is first collected in multiple different environmental
conditions. The data is then augmented to make the
system robust to driving off center and to different
potential environments. The next step is training the
network on this data. The network architecture is a
total of 9 layers starting with convolutional layers
and followed by fully-connected layers. This is the
network that we attempted to replicate.

Recently, a paper by a couple of IEEE
researchers introduced quite a different neural
network architecture that also takes the temporal
information into account [4]. They achieved this in
practice by a combination of standard vector-based
Long Short-Term Memory (LSTM) and
convolutional LSTM at different layers of the
proposed deep network. Consecutive frames usually
have a similar visual appearance, but subtle per
pixel motions can be observed when the optical
flow is computed. Conventional image

convolutions, as those adopted by state-of-the-art
image classification models, can shift along both
spatial dimensions in an image, which implies that
they are essentially 2-D. Since these convolutions
operate on static images or multi-channel response
maps, they are incapable of capturing temporal
dynamics in videos. The authors adopted a spatio
temporal convolution (ST-Conv) that shifts in both
spatial and temporal dimensions therefore applying
the convolution in 3 dimensions dimensions as
opposed to the traditional 2-D process.

A similar paper also proposed the idea to
incorporate temporal information in the model to
learn the steering information [5]. In this paper the
authors demonstrate quantitatively that a
Convolutional Long Short-Term Memory Recurrent
Neural Networks (C-LSTM) can significantly
improve end-to-end learning performance in
autonomous vehicle steering based on camera
images. Inspired by the adequacy of CNN in visual
feature extraction and the efficiency of Long
Short-Term Memory (LSTM) Recurrent Neural
Networks in dealing with long-range temporal
dependencies our approach allows to model
dynamic temporal dependencies in the context of
steering angle estimation based on camera input.

III. DATA COLLECTION

Fig. 1 Udacity Simulator

We used Udacity’s self-driving car simulator for
collecting the data. This simulator is built in Unity
and was used by Udacity for the Self-Driving
Nanodegree program but was recently open-sourced
[6]. It replicates what NVIDIA did in the
simulation. We can collected all our data from the
simulator. Using our keyboard to drive the car, we
were able to instruct the simulated vehicle to turn
left, right, speed up and slow down. Another
important aspect is that this simulator can be used
for training as well as testing the model. Hence, it
has two modes: (i) Training mode, and (ii)
Autonomous mode as shown in Fig. 1.

The training mode is used to collect the data and
the autonomous mode is used to test the model.
Additionally, there are two types of tracks in the
simulator - the lake track and the jungle track. The
lake track is relatively smaller and easy to handle
the car when compared with the jungle track as
shown in Fig. 2 and Fig. 3. The simulator captures
data when the car is driven around the track using
left and right keys to control the steering angles and
up and down arrows to control the speed.

Fig. 2. Udacity Simulator: The lake track

From this, the simulator generates a folder
containing images and one CSV file. The image
folder contains three images for every frame
captured by the left, center and right camera and
every row in the CSV file contains four metrics -
steering angle, speed, throttle and brake, for every

captured frame. Fig. 4, Fig. 5. and Fig. 6 show the
left, center and right image, for one frame.

Fig. 3. Udacity Simulator: The jungle track

Fig. 4. Left image

Fig. 5. Center image

Fig. 6. Right image

IV.DATA PREPROCESSING
The data that we collect i.e. the captured images

are preprocessed before training the model. While
preprocessing, the images are cropped to remove
the sky and front portion of the car. The images are
then converted from RGB to YUV and resized to
the input shape used by the model. This is done
because RGB is not the best mapping for visual
perception. YUV color-spaces is a much more
efficient coding and reduces the bandwidth more
than RGB capture can.

After selecting the final set of frames, the data is
augmented by adding artificial shifts and rotations
to teach the network how to recover from a poor
position or orientation. While augmenting, we
randomly choose right, left or center images,
randomly flip the images left/right and adjust the
steering angle. The steering angle is adjusted by
+0.2 for the left image and -0.2 for the right image.
Using the left/right flipped images is useful to train
the recovery driving scenario. We also randomly
translate the image horizontally or vertically with
steering angle adjustment. The horizontal
translation can be useful for handling scenarios with
difficult curves. The magnitude of these changes is
chosen randomly from a normal distribution. The
distribution has a zero mean. We applied these
augmentations using a script from the Udacity
repository.

Augmented images are added into the current set

of images and their corresponding steering angles
are also adjusted with respect to augmentation
performed. The primary reason for this
augmentation is to make the system more robust,
thus, learning as much as possible from the
environment by using diverse views with diverse
settings.

V. DEEP LEARNING MODEL

The deep learning model we prepared is based on
the research done by NVIDIA for their autonomous
vehicle [3]. The model comprises of the following
important layers.

A. Convolutional Layer
Convolutional layer applies the convolution
function (filter) on the input image and produces a
3D output activation of neurons. This layer helps to
find various features of the image which is used for
classification. The number of convolutional layers
in the network depends on the type of application.
The initial convolutional layers in the networks help
detect the low level features of the image which are
simple and the convolutional layers further help in
detecting the high-level features of the image.

B. Max Pooling Layer
Pooling/Down sampling layer helps in reducing the
number of parameters/weights in the network and
helps in reducing the training time without losing
any specific feature information of the image. This
layer produces a smaller image than the input image
by downsampling the image using pooling of
neurons. There are different types of pooling like
max pooling, average pooling, L2-norm pooling etc
but max pooling is the one which is most widely
used.

C. Dense Layer
Dense layer or Fully connected layer is the same as
normal neural network layer in which all the
neurons in this layer are connected to each neurons
from previous layer. This layer is generally
designed as the final layer in the convolutional

neural network.

The entire architecture diagram is shown in Fig. 7
There are 5 convolutional layers with varying
number of filters and sizes and a dropout after that
to handle overfitting. In the end, 3 dense layers
were added followed by the output layer. Adam
optimizer was used for parameter optimization with
a fixed learning rate. Batch size of 100 was chosen
and the number of epochs of 50-60 was
experimented with. On a machine without GPU, 16
GB ram Core i5 it took roughly 6 hours of training.

VI.SYSTEM ARCHITECTURE

Fig. 8 shows a high-level architecture of the
system. After performing data augmentation on the
input images, batches are created from them and fed
to the CNN model for training. After the training is
completed, the model is used to perform prediction
on the steering angle and send the predictions to the
Udacity Simulator to drive the car in real time.

VII. PERFORMANCE EVALUATION

For performance evaluation during training, mean
squared error was used as a loss function to keep a
track of the performance of the model.

MSE = (y y) (1/n) ∑
n

i=1
− ′ 2

In real life scenarios, while driving on road, the
following metric has been proposed in [3]. This
metric has been named as autonomy. It is
calculated by counting the number of interventions,
multiplying by 6 seconds, dividing by the elapsed
time of the simulated test, and then subtracting the
result from 1.

Autonomy = elapsed time [seconds]

1−(number of interventions) 6 seconds 100* *

To evaluate our system, we ran the autonomous
aspect of the simulator on both the jungle and lake
track. In the jungle track, the vehicle drove off the
rode after 8 seconds of driving. By the above

measure of autonomy, this would mean that the car
was 87.5% autonomous. We re-trained the model
with more data and the vehicle never drove off the
path, making it 100% autonomous. The overall
driving behavior doesn’t appear realistic. It appears
to bounce back and forth between the edges of the
lane.

During the first run on the lake track, the vehicle
doesn’t leave the track, but it appears to hug the left
side of the lane and that is the direction that the
curve in the track is turning towards. The vehicle
drives to the left side of the lane and when it runs
close to the left lane marking, the vehicle drives
back in the direction of the center of the lane until it
is around halfway between the center of the lane
and the left lane marking, then it drive back to the
left side of the lane. This behavior repeats. After
re-training the model, the vehicle’s driving appears
much more smooth. It doesn’t hug the left side of
the lane, but it appears to drive to one side of the
lane and move towards the other. This behavior also
repeats. In terms of autonomy, both models appear
to be 100% autonomous.

After the second time we trained the model, we
noticed that the vehicle can drive autonomously,
but the behavior was not natural. This is something
to keep in mind when refining the system.

VIII. FUTURE WORK

We have several ideas to improve the
performance of the self driving car, out of which
one was implemented due to lack of time. The first
idea would be to add the feature of speed to the
CNN so that when the simulator in autonomous
mode, it is using the predicted speed making the
movement appear to be more realistic.

The need for this element to be added came from
observing the simulator driving in autonomous
mode after training the car and noticing that after it
accelerates to the maximum speed, the car will
automatically slow down to the minimum speed
making it appear unrealistic. (We actually did add
this one)

Fig. 7. Deep Network Architecture

Another possible improvement would be to
consider each of the cameras separately and create
CNN models using each stream of images to create
a distinct steering command coming from the left,
center, and right model. Then averaging the three of
these to get a more accurate prediction. We would
expect that the majority of the time, this model
would have accurate predictions but if one model
predicts a steering angle that is very unlike the other
two, then it would skew the steering angle in an
unexpected direction. Figure 9 is a graphical
representation of this concept.

Fig. 8 High-level system architecture

In addition, we would like to add training data
where the car recovers from being off the road. In
the augmentation step of this process, the system
learns how to recover from some small mishaps but
never from larger deviations from the road. If the
autonomous car is driving completely off the road it
will not be able to recover. We want to add training
data where the car starts from being off the road
and makes its way back. This would require the
data recording to be clipped starting when the car is
off the road which would cut out the user driving
the car off the road because we don’t want the
model to learn to drive the car off the road, but we
do want it to learn driving onto the road.

Fig. 9. 3 Model Prediction

Another idea to improve the accuracy of the

steering would be to apply the deep steering
architecture proposed in [2] to combine standard
vector-based LSTM and convolutional LSTM to
allow the model to use both spatial and temporal
information to extract features.

An opportunity to evaluate the robustness of the
system is to create another track other than the
predefined jungle and lake track and see if the
model trained would be able to drive the car on the
track. Also, if it could drive relatively well, it would
be interesting to observe the difference in how well
it drives on the trained track versus the track that
the model hadn’t been trained on.

IX. CONCLUSIONS

In this project, we were able to successfully predict
the steering angles using convolutional neural
networks and were able to understand the inner
details of convolutional neural networks along with
the way they can be tuned. We also demonstrated
that CNN’s are able to learn the entire task of lane
and road following without manual decomposition
into road or lane marking detection, semantic
abstraction, path planning, and control. A small
amount of training data from less than a hundred
hours of driving was sufficient to train the car to
operate in diverse conditions, on highways, local
and residential roads in sunny, cloudy, and rainy
conditions. An interesting caveat to this is that the
system was able to successfully drive on the roads
that it had been trained on. Autonomous systems for
vehicles that don’t use the Udacity simulator
require a greater robustness as they have to take
into consideration roads that haven’t been driven on
and a greater amount of obstacles such as
pedestrians and stop signs. However, the task
defined in our paper was successfully
accomplished.

X. EXPERIMENTAL SETUP
The machine configuration for our experiments was as
follows:

HARDWARE:

● RAM - 16 GB
● Operating System - OS X - 10.13.3
● Hard disk size - 1 TB

SOFTWARE:

● Python
● Unity 3D
● Keras (Tensorflow Backend)
● Anaconda
● Open CV

REFERENCES
[1] LeCun, Y., et al. DAVE: Autonomous off-road vehicle control

using end-to-end learning. Technical Report DARPA-IPTO
Final Report, Courant Institute/CBLL, http://www. cs. nyu.
edu/yann/research/dave/index. html, 2004.

[2] Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a
neural network." Advances in neural information processing
systems. 1989.

[3] Bojarski, Mariusz, et al. "End to end learning for self-driving
cars." arXiv preprint arXiv:1604.07316 (2016).

[4] Chi, Lu, and Yadong Mu. "Deep Steering: Learning
End-to-End Driving Model from Spatial and Temporal Visual
Cues." arXiv preprint arXiv:1708.03798 (2017).

[5] Eraqi, Hesham M., Mohamed N. Moustafa, and Jens Honer.
"End-to-End Deep Learning for Steering Autonomous Vehicles
Considering Temporal Dependencies." arXiv preprint
arXiv:1710.03804 (2017).

[6] https://github.com/udacity/self-driving-car-sim
[7] Deep learning for Video classification and captioning by

Zuxuan Wu, Ting Yao, Yanwei Fu, Yu-Gang Jiang
[8] https://keras.io/backend
[9] https://github.com/llSourcell/How_to_simulate_a_self_driving

_car
[10] https://github.com/naokishibuya/car-behavioral-cloning
[11] https://github.com/jeremy-shannon/CarND-Behavioral-Cloning

-Project
[12] Visualizing and Understanding Convolutional Networks by

Matthew D. Zeiler, Rob Fergus.
[13] Dropout: A Simple Way to Prevent Neural Networks from

Overfitting by Nitish Srivastava, Geoffrey Hinton , Alex
Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov.

https://github.com/udacity/self-driving-car-sim
https://keras.io/backend/
https://github.com/llSourcell/How_to_simulate_a_self_driving_car
https://github.com/llSourcell/How_to_simulate_a_self_driving_car
https://github.com/naokishibuya/car-behavioral-cloning
https://github.com/jeremy-shannon/CarND-Behavioral-Cloning-Project
https://github.com/jeremy-shannon/CarND-Behavioral-Cloning-Project

