
Simulation of Self Driving Car 
 Shraddha Manchekar, Bhargav Parsi, Nikhil Thakur, Kelly Bielaski 

Computer Science Department, University of California, Los Angeles 
 

bparsi@g.ucla.edu 

nikhilt44@g.ucla.edu 

smanchekar@ucla.edu 

kellybielaski@ucla.edu 

 

 
Abstract​— For the past decade, there has been a surge of interest            
in self-driving cars. This is due to breakthroughs in the field of            
deep learning where deep neural networks are trained to         
perform tasks that typically require human intervention. CNN’s        
apply models to identify patterns and features in images, making          
them useful in the field of Computer Vision. Examples of these           
are object detection, image classification, i​mage captioning, etc.        
In this project, we have trained a CNN using images captured by            
a simulated car in order to drive the car autonomously. The CNN            
learns unique features from the images and gene​rates steering         
predictions allowing the car to drive without a human. For          
testing purposes and preparing the dataset the Unity based         
simulator provided by Udacity was used. 
 
Keywords​— ​autonomous driving, deep learning, Convolutional      
Neural Network (CNN), steering commands, NVIDIA,      
end-to-end learning,  deep steering 
 

I. INTRODUCTION 

In recent years, autonomous driving algorithms      
using low-cost vehicle-mounted cameras have     
attracted increasing research endeavours from both,      
academia and industry. Various levels of      
automation have been defined in autonomous      
driving. There’s no automation in level 0. A human         
driver controls the vehicle. Level 1 and 2 are         
advanced driver assistance systems where a human       
driver still controls the system but a few features         
like brake, stability control, etc. are automated.       
Level 3 vehicles are autonomous, however, a       
human driver is still needed to monitor and        
intervene whenever necessary. Level 4 vehicles are       
fully autonomous but the automation is limited to        
the operational design domain of the vehicle i.e. it         
does not cover every driving scenario. Level 5        
vehicles are expected to be fully autonomous and        
their performance should be equivalent to that of a         
human driver. We are very far from achieving level         

5 autonomous vehicles in the near future. However,        
level - 3/4 autonomous vehicles are potentially       
becoming a reality in the near future. Primary        
reasons for drastic technical achievements in this       
fields are technical breakthroughs and excellent      
research being done in the field of computer vision         
and machine learning and also the low-cost       
vehicle-mounted cameras which can either     
independently provide actionable information or     
complement other sensors. Many vision-based     
drivers assist features have been widely supported       
in the modern vehicles. Some of these features        
include pedestrian/bicycle detection, collision    
avoidance by estimating the front car distance, lane        
departure warning, etc. However, in this project, we        
target autonomous steering, which is a relatively       
unexplored task in the field of computer vision and         
machine learning.  

In this project, we implement a convolutional       
neural network (CNN) to map raw pixels from the         
captured images to the steering commands for a        
self-driving car. With minimum training data from       
the humans, the system learns to steer on the road,          
with or without the lane markings.  

This report is organized as follows. Section II        
contains a brief overview of the relevant works        
developed in the past years. Section III and IV         
elaborate on the data collection and data       
preprocessing part of the project respectively.      
Section V explains the deep learning model that we         
used and Section VI describes the system       
architecture. System performance is evaluated in      
section VII where section VIII and IX discuss the         
future work and conclusion.  
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II. RELATED WORK 

The DAVE system was created by DARPA [1]         
and used images from two cameras as well as left          
and right steering commands to train a model to         
drive. It demonstrates that the technique of       
end-to-end learning can be applied to autonomous       
driving. This means that the intermediate features       
such as the stop signs and lane markings don’t have          
to be annotated or labelled for the system to learn.          
DAVE is an early project in the field of         
autonomous driving. In the context of current       
technology, a huge portion relied on wireless data        
exchange because the vehicle couldn’t carry the       
computers and power sources for the system, which        
contrasts the lighter equipment that exists today.       
The architecture of this model was a CNN made up          
of fully connected layers that stemmed from       
networks previously used in object recognition. 

The ALVINN system [2] is a 3-layer        
back-propagation network built by a group at CMU        
to complete the task of lane-following. It trains on         
images from a camera and a distance measure from         
a laser range finder to output the direction the         
vehicle should move. ALVINN’s model uses a       
single hidden layer back-propagation network. 

We replicated a study by NVIDIA [3]. The         
system uses an end-to-end approach where the data        
is first collected in multiple different environmental       
conditions. The data is then augmented to make the         
system robust to driving off center and to different         
potential environments. The next step is training the        
network on this data. The network architecture is a         
total of 9 layers starting with convolutional layers        
and followed by fully-connected layers. This is the        
network that we attempted to replicate. 

Recently, a paper by a couple of IEEE        
researchers introduced quite a different neural      
network architecture that also takes the temporal       
information into account [4]. They achieved this in        
practice by a combination of standard vector-based       
Long Short-Term Memory (LSTM) and     
convolutional LSTM at different layers of the       
proposed deep network. Consecutive frames usually      
have a similar visual appearance, but subtle per        
pixel motions can be observed when the optical        
flow is computed. Conventional image     

convolutions, as those adopted by state-of-the-art      
image classification models, can shift along both       
spatial dimensions in an image, which implies that        
they are essentially 2-D. Since these convolutions       
operate on static images or multi-channel response       
maps, they are incapable of capturing temporal       
dynamics in videos. The authors adopted a spatio        
temporal convolution (ST-Conv) that shifts in both       
spatial and temporal dimensions therefore applying      
the convolution in 3 dimensions dimensions as       
opposed to the traditional 2-D process. 

A similar paper also proposed the idea to        
incorporate temporal information in the model to       
learn the steering information [5]. In this paper the         
authors demonstrate quantitatively that a     
Convolutional Long Short-Term Memory Recurrent     
Neural Networks (C-LSTM) can significantly     
improve end-to-end learning performance in     
autonomous vehicle steering based on camera      
images. Inspired by the adequacy of CNN in visual         
feature extraction and the efficiency of Long       
Short-Term Memory (LSTM) Recurrent Neural     
Networks in dealing with long-range temporal      
dependencies our approach allows to model      
dynamic temporal dependencies in the context of       
steering angle estimation based on camera input. 

 

III. DATA COLLECTION 

 

 
Fig. 1 Udacity Simulator 



We used Udacity’s self-driving car simulator for       
collecting the data. This simulator is built in Unity         
and was used by Udacity for the Self-Driving        
Nanodegree program but was recently open-sourced      
[6]. It replicates what NVIDIA did in the        
simulation. We can collected all our data from the         
simulator. Using our keyboard to drive the car, we         
were able to instruct the simulated vehicle to turn         
left, right, speed up and slow down. Another        
important aspect is that this simulator can be used         
for training as well as testing the model. Hence, it          
has two modes: (i) Training mode, and (ii)        
Autonomous mode as shown in Fig. 1. 

The training mode is used to collect the data and          
the autonomous mode is used to test the model.         
Additionally, there are two types of tracks in the         
simulator - the lake track and the jungle track. The          
lake track is relatively smaller and easy to handle         
the car when compared with the jungle track as         
shown in Fig. 2 and Fig. 3. The simulator captures          
data when the car is driven around the track using          
left and right keys to control the steering angles and          
up and down arrows to control the speed. 

 
Fig. 2. Udacity Simulator: The lake track 

 

From this, the simulator generates a folder       
containing images and one CSV file. The image        
folder contains three images for every frame       
captured by the left, center and right camera and         
every row in the CSV file contains four metrics -          
steering angle, speed, throttle and brake, for every        

captured frame. Fig. 4, Fig. 5. and Fig. 6 show the           
left, center and right image, for one frame.  

 

 
Fig. 3. Udacity Simulator: The jungle track 

 

 
Fig. 4. Left image 

 

 

Fig. 5. Center  image 



 

 
Fig. 6. Right image 

 

IV.DATA PREPROCESSING 
The data that we collect i.e. the captured images          

are preprocessed before training the model. While       
preprocessing, the images are cropped to remove       
the sky and front portion of the car. The images are           
then converted from RGB to YUV and resized to         
the input shape used by the model. This is done          
because RGB is not the best mapping for visual         
perception. YUV color-spaces is a much more       
efficient coding and reduces the bandwidth more       
than RGB capture can.  

After selecting the final set of frames, the data is           
augmented by adding artificial shifts and rotations       
to teach the network how to recover from a poor          
position or orientation. While augmenting, we      
randomly choose right, left or center images,       
randomly flip the images left/right and adjust the        
steering angle. The steering angle is adjusted by        
+0.2 for the left image and -0.2 for the right image.           
Using the left/right flipped images is useful to train         
the recovery driving scenario. We also randomly       
translate the image horizontally or vertically with       
steering angle adjustment. The horizontal     
translation can be useful for handling scenarios with        
difficult curves. The magnitude of these changes is        
chosen randomly from a normal distribution. The       
distribution has a zero mean. We applied these        
augmentations using a script from the Udacity       
repository. 

Augmented images are added into the current set         

of images and their corresponding steering angles       
are also adjusted with respect to augmentation       
performed. The primary reason for this      
augmentation is to make the system more robust,        
thus, learning as much as possible from the        
environment by using diverse views with diverse       
settings.  
 

V. DEEP LEARNING MODEL 

The deep learning model we prepared is based on         
the research done by NVIDIA for their autonomous        
vehicle [3]. The model comprises of the following        
important layers. 
 

A. Convolutional Layer 
Convolutional layer applies the convolution     
function (filter) on the input image and produces a         
3D output activation of neurons. This layer helps to         
find various features of the image which is used for          
classification. The number of convolutional layers      
in the network depends on the type of application.         
The initial convolutional layers in the networks help        
detect the low level features of the image which are          
simple and the convolutional layers further help in        
detecting the high-level features of the image. 
 

B. Max Pooling Layer 
Pooling/Down sampling layer helps in reducing the       
number of parameters/weights in the network and       
helps in reducing the training time without losing        
any specific feature information of the image. This        
layer produces a smaller image than the input image         
by downsampling the image using pooling of       
neurons. There are different types of pooling like        
max pooling, average pooling, L2-norm pooling etc       
but max pooling is the one which is most widely          
used. 
 

C. Dense Layer 
Dense layer or Fully connected layer is the same as          
normal neural network layer in which all the        
neurons in this layer are connected to each neurons         
from previous layer. This layer is generally       
designed as the final layer in the convolutional        



neural network. 
 
The entire architecture diagram is shown in Fig. 7         
There are 5 convolutional layers with varying       
number of filters and sizes and a dropout after that          
to handle overfitting. In the end, 3 dense layers         
were added followed by the output layer. Adam        
optimizer was used for parameter optimization with       
a fixed learning rate. Batch size of 100 was chosen          
and the number of epochs of 50-60 was        
experimented with. On a machine without GPU, 16        
GB ram Core i5 it took roughly 6 hours of training. 

VI.SYSTEM ARCHITECTURE 
 

Fig. 8 shows a high-level architecture of the        
system. After performing data augmentation on the       
input images, batches are created from them and fed         
to the CNN model for training. After the training is          
completed, the model is used to perform prediction        
on the steering angle and send the predictions to the          
Udacity Simulator to drive the car in real time.  

VII. PERFORMANCE EVALUATION 

For performance evaluation during training, mean      
squared error was used as a loss function to keep a           
track of the performance of the model. 

 

MSE =  (y y ) (1/n) ∑
n

i=1
−  ′ 2  

    

 

In real life scenarios, while driving on road, the         
following metric has been proposed in [3]. This        
metric has been named as autonomy. It is        
calculated by counting the number of interventions,       
multiplying by 6 seconds, dividing by the elapsed        
time of the simulated test, and then subtracting the         
result from 1. 

 
Autonomy = elapsed time [seconds]

1−(number of  interventions)  6 seconds   100* *  
 

To evaluate our system, we ran the autonomous        
aspect of the simulator on both the jungle and lake          
track. In the jungle track, the vehicle drove off the          
rode after 8 seconds of driving. By the above         

measure of autonomy, this would mean that the car         
was 87.5% autonomous. We re-trained the model       
with more data and the vehicle never drove off the          
path, making it 100% autonomous. The overall       
driving behavior doesn’t appear realistic. It appears       
to bounce back and forth between the edges of the          
lane. 

During the first run on the lake track, the vehicle          
doesn’t leave the track, but it appears to hug the left           
side of the lane and that is the direction that the           
curve in the track is turning towards. The vehicle         
drives to the left side of the lane and when it runs            
close to the left lane marking, the vehicle drives         
back in the direction of the center of the lane until it            
is around halfway between the center of the lane         
and the left lane marking, then it drive back to the           
left side of the lane. This behavior repeats. After         
re-training the model, the vehicle’s driving appears       
much more smooth. It doesn’t hug the left side of          
the lane, but it appears to drive to one side of the            
lane and move towards the other. This behavior also         
repeats. In terms of autonomy, both models appear        
to be 100% autonomous.  

After the second time we trained the model, we         
noticed that the vehicle can drive autonomously,       
but the behavior was not natural. This is something         
to keep in mind when refining the system. 

VIII. FUTURE WORK 

We have several ideas to improve the       
performance of the self driving car, out of which         
one was implemented due to lack of time. The first          
idea would be to add the feature of speed to the           
CNN so that when the simulator in autonomous        
mode, it is using the predicted speed making the         
movement appear to be more realistic.  

The need for this element to be added came from          
observing the simulator driving in autonomous      
mode after training the car and noticing that after it          
accelerates to the maximum speed, the car will        
automatically slow down to the minimum speed       
making it appear unrealistic. (We actually did add        
this one) 
 

 



 
Fig. 7. Deep Network Architecture 

 

Another possible improvement would be to      
consider each of the cameras separately and create        
CNN models using each stream of images to create         
a distinct steering command coming from the left,        
center, and right model. Then averaging the three of         
these to get a more accurate prediction. We would         
expect that the majority of the time, this model         
would have accurate predictions but if one model        
predicts a steering angle that is very unlike the other          
two, then it would skew the steering angle in an          
unexpected direction. Figure 9 is a graphical       
representation of this concept. 

 
 

Fig. 8 High-level system architecture 
 

In addition, we would like to add training data         
where the car recovers from being off the road. In          
the augmentation step of this process, the system        
learns how to recover from some small mishaps but         
never from larger deviations from the road. If the         
autonomous car is driving completely off the road it         
will not be able to recover. We want to add training           
data where the car starts from being off the road          
and makes its way back. This would require the         
data recording to be clipped starting when the car is          
off the road which would cut out the user driving          
the car off the road because we don’t want the          
model to learn to drive the car off the road, but we            
do want it to learn driving onto the road. 

 

 
Fig. 9. 3 Model Prediction 

 



 
Another idea to improve the accuracy of the        

steering would be to apply the deep steering        
architecture proposed in [2] to combine standard       
vector-based LSTM and convolutional LSTM to      
allow the model to use both spatial and temporal         
information to extract features. 

An opportunity to evaluate the robustness of the        
system is to create another track other than the         
predefined jungle and lake track and see if the         
model trained would be able to drive the car on the           
track. Also, if it could drive relatively well, it would          
be interesting to observe the difference in how well         
it drives on the trained track versus the track that          
the model hadn’t been trained on. 

 

IX.  CONCLUSIONS 

In this project, we were able to successfully predict         
the steering angles using convolutional neural      
networks and were able to understand the inner        
details of convolutional neural networks along with       
the way they can be tuned. We also demonstrated         
that CNN’s are able to learn the entire task of lane           
and road following without manual decomposition      
into road or lane marking detection, semantic       
abstraction, path planning, and control. A small       
amount of training data from less than a hundred         
hours of driving was sufficient to train the car to          
operate in diverse conditions, on highways, local       
and residential roads in sunny, cloudy, and rainy        
conditions. An interesting caveat to this is that the         
system was able to successfully drive on the roads         
that it had been trained on. Autonomous systems for         
vehicles that don’t use the Udacity simulator       
require a greater robustness as they have to take         
into consideration roads that haven’t been driven on        
and a greater amount of obstacles such as        
pedestrians and stop signs. However, the task       
defined in our paper was successfully      
accomplished. 

 

X.  EXPERIMENTAL SETUP 
The machine configuration for our experiments was as        
follows: 
 
HARDWARE: 
 

● RAM - 16 GB 
● Operating System - OS X - 10.13.3 
● Hard disk size - 1 TB  

 
 
 
 
SOFTWARE: 
 

● Python 
● Unity 3D 
● Keras (Tensorflow Backend) 
● Anaconda 
● Open CV 
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